Color Vision Fundamentals

Jeff Rabin, OD, PhD
Chief, Visual Function Laboratory
Ophthalmology Branch
USAF School of Aerospace Medicine
Visible light is small part of electromagnetic spectrum.
The visible spectrum includes 300 wavelengths (400-700 nm), and in some portions we can discern color differences of 1 wavelength. The ability to see so many colors depends on:

a. a separate cone for each wavelength.
b. optic nerve fibers for each color.
c. visual cortex neurons sensitive to each color.
d. difference in stimulation of red, green and blue sensitive cones.
Retinal Cones—Normal Color Vision

- Red cones
- Green cones
- Blue cones
- **Brightness** = $R + G$
- Color = $R - G$
- Color = $B - (R+G)$
- Red cones outnumber green cones 2/1
- Red + Green cones outnumber blue cones 10/1

Blue cones absent in central fovea
Red, green and blue cone sensitivity vs. wavelength curves
What happens in hereditary color deficiency?

- **Red** or **green** cone peak sensitivity is shifted.
- **Red** or **green** cones absent.
NORMAL CONE SENSITIVITY CURVES (TRICHRROMAT)
Deuteranomaly
(green shifted toward red)

B

G

R

437 nm

564 nm

5% of Males

5% of Males
Deutan Dichromat
(no green cones; only red and blue)
1% of Males (there is no green curve)

Deutan Dichromat
(no green cones; only red and blue)
1% of Males

Protanomalous (red shifted toward green)

437 nm

533 nm
1% of Males

Protan Dichromat
(no red cones; only green and blue)
1% of Males (there is no red curve)

Protan Dichromat
(no red cones; only green and blue)
Why do colors that look different to us appear the same to color deficient individuals?
Consider a **green vs. yellow light**... The two spots appear different in color because $R-G$ is large for one, and small for the other.

Diagram:
- **B** (Blue) represents stimulation of blue cones.
- **G** (Green) represents stimulation of green cones.
- **R** (Red) represents stimulation of red cones.

Large difference in stimulation of green and red cones for one, and small for the other.
Each spot produces the same R-G stimulation and thus looks the same!

Deuteranomaly

(the green sensitivity curve is shifted toward the red)
Some Views With and Without Color Vision

Trichromacy Dichromacy Monochromacy

Link ➔ Jay and Maureen Neitz Color Vision Page
Drs. Jay and Maureen Neitz
Department of Cell Biology, Neurobiology & Anatomy
Department of Ophthalmology
Medical College of Wisconsin
Color Labeling

- Color deficients rely heavily on context and learning—apple is “red” because patient learns to call it red—same hue may appear gray when presented without other cues.

- For wavelengths beyond 545, relative brightness, context, and learning play a significant role verbal label and response.
Hereditary Color Deficiency

- 8-10% of males and 1/200 females (0.5%) are born with red or green color deficiency.
- Sex-linked recessive condition (X chromosome).
- **Protanomaly**—red cone peak shifted toward green (1%)
- **Protan Dichromat**—red cones absent (1%)
- **Deuteranomaly**—green cone peak shifted toward red (5%)
- **Deutan Dichromat**—green cones absent (1%)
- Hereditary tritan defects are rare (0.008%)
<table>
<thead>
<tr>
<th>Color Deficiency</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protanopia</td>
<td>1%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Deuteranopia</td>
<td>1%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Protanomaly</td>
<td>1%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Deuteranomaly</td>
<td>5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Overall (red-green)</td>
<td>8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Tritanopia</td>
<td>0.008%</td>
<td>0.008%</td>
</tr>
<tr>
<td>Tritanomaly</td>
<td>Rare</td>
<td>Rare</td>
</tr>
<tr>
<td>Rod monochromatism</td>
<td>Rare</td>
<td>Rare</td>
</tr>
<tr>
<td>Cone monochromatism</td>
<td>Rare</td>
<td>Rare</td>
</tr>
</tbody>
</table>
END SLIDE SHOW
OF COLOR VISION
FUNDAMENTALS